Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 119
1.
Orphanet J Rare Dis ; 19(1): 188, 2024 May 07.
Article En | MEDLINE | ID: mdl-38715109

BACKGROUND: X-linked myotubular myopathy (XLMTM) is a rare, life-threatening congenital disease, which is not well-defined. To our knowledge, no studies characterizing the XLMTM disease burden have been conducted in Brazil. We identified and described patients with suspected XLMTM using administrative claims data from the Brazilian public healthcare system. METHODS: Data from 2015 to 2019 were extracted from the DATASUS database. As no XLMTM-specific ICD-10 code was available, a stepwise algorithm was applied to identify patients with suspected XLMTM by selecting male patients with a congenital myopathies code (G71.2), aged < 18 years at index date (first claim of G71.2), with an associated diagnostic procedure (muscle biopsy/genetic test) and without spinal muscular atrophy or Duchenne muscular dystrophy. We attempted to identify patients with suspected severe XLMTM based on use of both respiratory and feeding support, which are nearly universal in the care of XLMTM patients. Analyses were performed for the overall cohort and stratified by age at index date < 5 years old and ≥ 5 years old. RESULTS: Of 173 patients with suspected XLMTM identified, 39% were < 5 years old at index date. Nearly all (N = 166) patients (96%) were diagnosed by muscle biopsy (91% of patients < 5 years old and 99% of patients ≥ 5 years old), six (3.5%) were diagnosed by clinical evaluation (8% of patients < 5 years old and 1% of patients ≥ 5 years old), and one was diagnosed by a genetic test. Most patients lived in Brasilia (n = 55), São Paulo (n = 33) and Minas Gerais (n = 27). More than 85% of patients < 5 years old and approximately 75% of patients ≥ 5 years old had physiotherapy at the index date. In both age groups, nearly 50% of patients required hospitalization at some point and 25% required mobility support. Respiratory and feeding support were required for 3% and 12% of patients, respectively, suggesting that between 5 and 21 patients may have had severe XLMTM. CONCLUSION: In this real-world study, genetic testing for XLMTM appears to be underutilized in Brazil and may contribute to underdiagnosis of the disease. Access to diagnosis and care is limited outside of specific regions with specialized clinics and hospitals. Substantial use of healthcare resources included hospitalization, physiotherapy, mobility support, and, to a lesser extent, feeding support and respiratory support.


Myopathies, Structural, Congenital , Humans , Myopathies, Structural, Congenital/diagnosis , Myopathies, Structural, Congenital/pathology , Male , Brazil , Child , Adolescent , Child, Preschool , Infant , Delivery of Health Care , Female , Young Adult , Adult
2.
Muscle Nerve ; 2024 May 13.
Article En | MEDLINE | ID: mdl-38738747

INTRODUCTION/AIMS: Language is frequently affected in patients with sporadic amyotrophic lateral sclerosis (sALS), with reduced performance in naming, syntactic comprehension, grammatical expression, and orthographic processing. However, the language profile of patients with familial type 8 ALS (ALS8), linked to p.P56S VAPB mutation, remains unclear. We investigated language in patients with ALS8 by examining their auditory comprehension and verbal production. METHODS: We included three groups of participants: (1) patients with sALS (n = 20), (2) patients with familial ALS8 (n = 22), and (3) healthy controls (n = 21). The groups were matched for age, sex, and education level. All participants underwent a comprehensive language battery, including the Boston Diagnostic Aphasia Examination, the reduced Token test, letter fluency, categorical fluency (animals), word definition from the Cambridge Semantic Memory Research Battery, and a narrative discourse analysis. Participants also were evaluated using Addenbrooke's Cognitive Exam-Revised Version, the Hospital Anxiety and Depression Scale, and the ALS Functional Rating Scale-Revised. RESULTS: Compared to controls, sALS and ALS8 patients had impaired performance on oral (syntactic and phonological processing) comprehension and inappropriate discourse cohesion. sALS and ALS8 did not differ in any language measure. There was no correlation between language scores and functional and psychiatric scales. DISCUSSION: ALS8 patients exhibit language deficits that are independent of motor features. These findings are consistent with the current evidence suggesting that ALS8 has prominent non-motor features.

3.
Neurol Genet ; 10(3): e200153, 2024 Jun.
Article En | MEDLINE | ID: mdl-38681507

Background and Objectives: Congenital ataxias are rare hereditary disorders characterized by hypotonia and developmental motor delay in the first few months of life, followed by cerebellar ataxia in early childhood. The course of the disease is predominantly nonprogressive, and many patients are incorrectly diagnosed with cerebral palsy. Despite significant advancements in next-generation sequencing in the past few decades, a specific genetic diagnosis is seldom obtained in cases of congenital ataxia. The aim of the study was to analyze the clinical, radiologic, and genetic features of a cohort of Brazilian patients with congenital ataxia. Methods: Thirty patients with a clinical diagnosis of congenital ataxia were enrolled in this study. Clinical and demographic features and neuroimaging studies were analyzed. Genetic testing (whole-exome sequencing) was also performed. Results: A heterogeneous pattern of genetic variants was detected. Eighteen genes were involved: ALDH5A1, BRF1, CACNA1A CACNA1G, CC2D2A, CWF19L1, EXOSC3, ITPR1, KIF1A, MME, PEX10, SCN2A, SNX14, SPTBN2, STXBP1, TMEM240, THG1L, and TUBB4A. Pathogenic/likely pathogenic variants involving 11 genes (ALDH5A1, CACNA1A, EXOSC3, MME, ITPR1, KIF1A, STXBP1, SNX14, SPTBN2, TMEM240, and TUBB4A) were identified in 46.7% of patients. Variants of uncertain significance involving 8 genes were detected in 33.3% of patients. Congenital ataxias were characterized by a broad phenotype. A genetic diagnosis was more often obtained in patients with cerebellar-plus syndrome than in patients with a pure cerebellar syndrome. Discussion: This study re-emphasizes the genetic heterogeneity of congenital ataxias and the absence of a clear phenotype-genotype relationship. A specific genetic diagnosis was established in 46.7% of patients. Autosomal dominant, associated with sporadic cases, was recognized as an important genetic inheritance. The results of this analysis highlight the value of whole-exome sequencing as an efficient screening tool in patients with congenital ataxia.

4.
Muscle Nerve ; 69(6): 682-690, 2024 Jun.
Article En | MEDLINE | ID: mdl-38517116

INTRODUCTION/AIMS: Carriers of DMD pathogenic variants may become symptomatic and develop muscle-related manifestations. Despite that, few studies have attempted to characterize changes in the muscles of these carriers using imaging tools, particularly muscle ultrasound (MUS). The aim of this study was to compare lower limb MUS findings in carriers of DMD pathogenic variants (cDMD) vs healthy controls. METHODS: Twenty-eight women (15 cDMD and 13 controls) underwent clinical evaluation and MUS. We collected information about muscle-related symptoms and assessed muscle strength. MUS was performed by a single physician (blind to the genetic status of subjects). The following muscles were assessed: rectus femoris, sartorius, tibialis anterior, and medial gastrocnemius. For each site, we computed data on muscle thickness, cross-sectional area, sound attenuation index, and elastography. Between-group comparisons were assessed using nonparametric tests and p-values <.05 were deemed significant. RESULTS: None of the subjects had objective muscle weakness, but exercise intolerance/fatigue was reported by four cDMDs and only one control. Regarding MUS, sound attenuation indices were significantly higher among carriers for all muscles tested. Longitudinal and axial deep echo intensities for the rectus femoris and tibialis anterior were also higher in the cDMD group compared with controls. No significant between-group differences were noted for elastography values, muscle area, or mean echo intensities. DISCUSSION: cDMD have skeletal muscle abnormalities that can be detected using quantitative MUS. Further studies are needed to determine whether such abnormalities are related to muscle symptoms in these patients.


Muscle, Skeletal , Muscular Dystrophy, Duchenne , Ultrasonography , Humans , Female , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/physiopathology , Adult , Muscular Dystrophy, Duchenne/diagnostic imaging , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/physiopathology , Young Adult , Middle Aged , Dystrophin/genetics , Heterozygote , Adolescent , Muscle Strength/physiology
5.
Article En | MEDLINE | ID: mdl-38383154

BACKGROUND: Spinal cord damage is a feature of many spinocerebellar ataxias (SCAs), but well-powered in vivo studies are lacking and links with disease severity and progression remain unclear. Here we characterise cervical spinal cord morphometric abnormalities in SCA1, SCA2, SCA3 and SCA6 using a large multisite MRI dataset. METHODS: Upper spinal cord (vertebrae C1-C4) cross-sectional area (CSA) and eccentricity (flattening) were assessed using MRI data from nine sites within the ENIGMA-Ataxia consortium, including 364 people with ataxic SCA, 56 individuals with preataxic SCA and 394 nonataxic controls. Correlations and subgroup analyses within the SCA cohorts were undertaken based on disease duration and ataxia severity. RESULTS: Individuals in the ataxic stage of SCA1, SCA2 and SCA3, relative to non-ataxic controls, had significantly reduced CSA and increased eccentricity at all examined levels. CSA showed large effect sizes (d>2.0) and correlated with ataxia severity (r<-0.43) and disease duration (r<-0.21). Eccentricity correlated only with ataxia severity in SCA2 (r=0.28). No significant spinal cord differences were evident in SCA6. In preataxic individuals, CSA was significantly reduced in SCA2 (d=1.6) and SCA3 (d=1.7), and the SCA2 group also showed increased eccentricity (d=1.1) relative to nonataxic controls. Subgroup analyses confirmed that CSA and eccentricity are abnormal in early disease stages in SCA1, SCA2 and SCA3. CSA declined with disease progression in all, whereas eccentricity progressed only in SCA2. CONCLUSIONS: Spinal cord abnormalities are an early and progressive feature of SCA1, SCA2 and SCA3, but not SCA6, which can be captured using quantitative MRI.

6.
Mov Disord Clin Pract ; 11(1): 45-52, 2024 Jan.
Article En | MEDLINE | ID: mdl-38291837

BACKGROUND: RFC1-related disorder (RFC1/CANVAS) shares clinical features with other late-onset ataxias, such as spinocerebellar ataxias (SCA) and multiple system atrophy cerebellar type (MSA-C). Thinning of cranial nerves V (CNV) and VIII (CNVIII) has been reported in magnetic resonance imaging (MRI) scans of RFC1/CANVAS, but its specificity remains unclear. OBJECTIVES: To assess the usefulness of CNV and CNVIII thinning to differentiate RFC1/CANVAS from SCA and MSA-C. METHODS: Seventeen individuals with RFC1/CANVAS, 57 with SCA (types 2, 3 and 6), 11 with MSA-C and 15 healthy controls were enrolled. The Balanced Fast Field Echo sequence was used for assessment of cranial nerves. Images were reviewed by a neuroradiologist, who classified these nerves as atrophic or normal, and subsequently the CNV was segmented manually by an experienced neurologist. Both assessments were blinded to patient and clinical data. Non-parametric tests were used to assess between-group comparisons. RESULTS: Atrophy of CNV and CNVIII, both alone and in combination, was significantly more frequent in the RFC1/CANVAS group than in healthy controls and all other ataxia groups. Atrophy of CNV had the highest sensitivity (82%) and combined CNV and CNVIII atrophy had the best specificity (92%) for diagnosing RFC1/CANVAS. In the quantitative analyses, CNV was significantly thinner in the RFC1/CANVAS group relative to all other groups. The cutoff CNV diameter that best identified RFC1/CANVAS was ≤2.2 mm (AUC = 0.91; sensitivity 88.2%, specificity 95.6%). CONCLUSION: MRI evaluation of CNV and CNVIII using a dedicated sequence is an easy-to-use tool that helps to distinguish RFC1/CANVAS from SCA and MSA-C.


Multiple System Atrophy , Spinocerebellar Ataxias , Humans , Ataxia/pathology , Atrophy/pathology , Cerebellum/pathology , Cranial Nerves/pathology , Multiple System Atrophy/diagnosis , Spinocerebellar Ataxias/diagnosis
7.
J Neurol Neurosurg Psychiatry ; 95(2): 103-113, 2024 Jan 11.
Article En | MEDLINE | ID: mdl-38041679

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of the upper and lower motor neurons with varying ages of onset, progression and pathomechanisms. Monogenic childhood-onset ALS, although rare, forms an important subgroup of ALS. We recently reported specific SPTLC1 variants resulting in sphingolipid overproduction as a cause for juvenile ALS. Here, we report six patients from six independent families with a recurrent, de novo, heterozygous variant in SPTLC2 c.778G>A [p.Glu260Lys] manifesting with juvenile ALS. METHODS: Clinical examination of the patients along with ancillary and genetic testing, followed by biochemical investigation of patients' blood and fibroblasts, was performed. RESULTS: All patients presented with early-childhood-onset progressive weakness, with signs and symptoms of upper and lower motor neuron degeneration in multiple myotomes, without sensory neuropathy. These findings were supported on ancillary testing including nerve conduction studies and electromyography, muscle biopsies and muscle ultrasound studies. Biochemical investigations in plasma and fibroblasts showed elevated levels of ceramides and unrestrained de novo sphingolipid synthesis. Our studies indicate that SPTLC2 variant [c.778G>A, p.Glu260Lys] acts distinctly from hereditary sensory and autonomic neuropathy (HSAN)-causing SPTLC2 variants by causing excess canonical sphingolipid biosynthesis, similar to the recently reported SPTLC1 ALS associated pathogenic variants. Our studies also indicate that serine supplementation, which is a therapeutic in SPTLC1 and SPTCL2-associated HSAN, is expected to exacerbate the excess sphingolipid synthesis in serine palmitoyltransferase (SPT)-associated ALS. CONCLUSIONS: SPTLC2 is the second SPT-associated gene that underlies monogenic, juvenile ALS and further establishes alterations of sphingolipid metabolism in motor neuron disease pathogenesis. Our findings also have important therapeutic implications: serine supplementation must be avoided in SPT-associated ALS, as it is expected to drive pathogenesis further.


Amyotrophic Lateral Sclerosis , Hereditary Sensory and Autonomic Neuropathies , Neurodegenerative Diseases , Child , Humans , Amyotrophic Lateral Sclerosis/genetics , Sphingolipids , Serine C-Palmitoyltransferase/genetics , Serine C-Palmitoyltransferase/metabolism , Hereditary Sensory and Autonomic Neuropathies/genetics , Serine
8.
Arq Neuropsiquiatr ; 81(11): 1000-1007, 2023 Nov.
Article En | MEDLINE | ID: mdl-38035585

BACKGROUND: Hereditary or familial spastic paraplegias (SPG) comprise a group of genetically and phenotypically heterogeneous diseases characterized by progressive degeneration of the corticospinal tracts. The complicated forms evolve with other various neurological signs and symptoms, including movement disorders and ataxia. OBJECTIVE: To summarize the clinical descriptions of SPG that manifest with movement disorders or ataxias to assist the clinician in the task of diagnosing these diseases. METHODS: We conducted a narrative review of the literature, including case reports, case series, review articles and observational studies published in English until December 2022. RESULTS: Juvenile or early-onset parkinsonism with variable levodopa-responsiveness have been reported, mainly in SPG7 and SPG11. Dystonia can be observed in patients with SPG7, SPG11, SPG22, SPG26, SPG35, SPG48, SPG49, SPG58, SPG64 and SPG76. Tremor is not a frequent finding in patients with SPG, but it is described in different types of SPG, including SPG7, SPG9, SPG11, SPG15, and SPG76. Myoclonus is rarely described in SPG, affecting patients with SPG4, SPG7, SPG35, SPG48, and SPOAN (spastic paraplegia, optic atrophy, and neuropathy). SPG4, SPG6, SPG10, SPG27, SPG30 and SPG31 may rarely present with ataxia with cerebellar atrophy. And autosomal recessive SPG such as SPG7 and SPG11 can also present with ataxia. CONCLUSION: Patients with SPG may present with different forms of movement disorders such as parkinsonism, dystonia, tremor, myoclonus and ataxia. The specific movement disorder in the clinical manifestation of a patient with SPG may be a clinical clue for the diagnosis.


ANTECEDENTES: As paraplegias espásticas hereditárias ou familiares (SPG) compreendem um grupo de doenças geneticamente e fenotipicamente heterogêneas caracterizadas por degeneração progressiva dos tratos corticospinais. As formas complicadas evoluem com vários outros sinais e sintomas neurológicos, incluindo distúrbios do movimento e ataxia. OBJETIVO: Resumir as descrições clínicas de SPG que se manifestam com distúrbios do movimento ou ataxias para auxiliar o clínico na tarefa de diagnosticar essas doenças. MéTODOS: Realizamos uma revisão da literatura, incluindo relatos de casos, séries de casos, artigos de revisão e estudos observacionais publicados em inglês até dezembro de 2022. RESULTADOS: O parkinsonismo juvenil ou de início precoce com resposta variável à levodopa foi relatado principalmente em SPG7 e SPG11. A distonia pode ser observada em pacientes com SPG7, SPG11, SPG22, SPG26, SPG35, SPG48, SPG49, SPG58, SPG64 e SPG76. O tremor não é um achado frequente em pacientes com SPG, mas é descrito em diferentes tipos de SPG, incluindo SPG7, SPG9, SPG11, SPG15 e SPG76. A mioclonia é raramente descrita em SPG, afetando pacientes com SPG4, SPG7, SPG35, SPG48 e SPOAN (paraplegia espástica, atrofia óptica e neuropatia). SPG4, SPG6, SPG10, SPG27, SPG30 e SPG31 podem raramente apresentar ataxia com atrofia cerebelar. E SPG autossômico recessivo, como SPG7 e SPG11, também pode apresentar ataxia. CONCLUSãO: Indivíduos com SPG podem apresentar diferentes formas de distúrbios do movimento, como parkinsonismo, distonia, tremor, mioclonia e ataxia. O distúrbio específico do movimento na manifestação clínica de um paciente com SPG pode ser uma pista clínica para o diagnóstico.


Dystonia , Movement Disorders , Parkinsonian Disorders , Spastic Paraplegia, Hereditary , Humans , Spastic Paraplegia, Hereditary/diagnosis , Mutation , Tremor/diagnosis , Tremor/etiology , Dystonia/diagnosis , Dystonia/etiology , Ataxia , Parkinsonian Disorders/diagnosis , Proteins/genetics
9.
Parkinsonism Relat Disord ; 115: 105854, 2023 Oct.
Article En | MEDLINE | ID: mdl-37729670

INTRODUCTION: Parkinsonism is now recognized as an additional feature in RFC1/CANVAS syndrome; however, no systematic evaluation of nigrostriatal dopaminergic function has been published so far. METHODS: This is an observational, single-center study, which analyzed 13 patients with molecular confirmation of RFC1/CANVAS. Disease severity was assessed with the SARA scale. Each subject was carefully evaluated for the presence of parkinsonian features. Dopamine transporter (DAT) imaging was acquired and reconstructed in the transverse, coronal and sagittal planes 4 h after venous injection of 99mTc-TRODAT-1. An experienced nuclear physician performed the visual analysis of all images. RESULTS: Patients had a mean age of 62.3 ± 8.8 years, and there were 9 women. The mean SARA score was 15.5 ± 5.8. Nine patients had abnormal DAT imaging results. The putamen was more frequently affected than the caudate nucleus on both sides. Considering all regions, uptake of 99mTc-TRODAT-1 did not correlate with disease duration or SARA scores. Parkinsonism was noticed in 3/13 patients, all of which had abnormal DAT scans. Interestingly, six subjects had reduced DAT imaging uptake, but no clinical signs of parkinsonism. CONCLUSION: Nigrostriatal dysfunction is frequent in RFC1/CANVAS even in the absence of clinical parkinsonism and may occur early in the disease course.

10.
Semin Ultrasound CT MR ; 44(5): 436-451, 2023 Oct.
Article En | MEDLINE | ID: mdl-37555685

Spinal cord tumors are uncommon, and its multiple representatives not always have pathognomonic characteristics, which poses a challenge for both patients and caring physicians. The radiologist performs an important role in recognizing these tumors, as well as in differentiating between neoplastic and non-neoplastic processes, supporting clinical and surgical decision-making in patients with spinal cord injury. Magnetic Resonance Imaging (MRI) assessment, paired with a deep understanding of the various patterns of cord involvement allied to detailed clinical data can provide a diagnosis or significantly limit the differential diagnosis in most cases. In this article, we aim to review the most common and noteworthy intramedullary and extramedullary spinal tumors, as well as some other tumoral mimics, with an emphasis on their MRI morphologic characteristics.


Spinal Cord Injuries , Spinal Cord Neoplasms , Humans , Spinal Cord Neoplasms/diagnostic imaging , Spinal Cord Neoplasms/pathology , Magnetic Resonance Imaging/methods , Diagnosis, Differential , Spinal Cord
11.
Semin Ultrasound CT MR ; 44(5): 464-468, 2023 Oct.
Article En | MEDLINE | ID: mdl-37581877

For a long time, technical obstacles have hampered the acquisition of high-resolution images and the development of reliable processing protocols for spinal cord (SC) MRI. Fortunately, this scenario has changed in the past 5-10 years, due to hardware and software improvements. Nowadays, with advanced protocols, SC MRI is considered a useful tool for several inherited and acquired neurologic diseases, not only for diagnosis approach but also for pathophysiological unraveling and as a biomarker for disease monitoring and clinical trials. In this review, we address advanced SC MRI sequences for macrostructural and microstructural evaluation, useful semiautomatic and automatic processing tools and clinical applications on several neurologic conditions such as hereditary cerebellar ataxia, hereditary spastic paraplegia, motor neuron diseases and multiple sclerosis.


Multiple Sclerosis , Spastic Paraplegia, Hereditary , Humans , Spinal Cord/diagnostic imaging , Magnetic Resonance Imaging/methods , Spastic Paraplegia, Hereditary/pathology
12.
Neurol Genet ; 9(5): e200094, 2023 Oct.
Article En | MEDLINE | ID: mdl-37646005

Objectives: Intronic FGF14 GAA repeat expansions have recently been found to be a common cause of hereditary ataxia (GAA-FGF14 ataxia; SCA27B). The global epidemiology and regional prevalence of this newly reported disorder remain to be established. In this study, we investigated the frequency of GAA-FGF14 ataxia in a large cohort of Brazilian patients with unsolved adult-onset ataxia. Methods: We recruited 93 index patients with genetically unsolved adult-onset ataxia despite extensive genetic investigation and genotyped the FGF14 repeat locus. Patients were recruited across 4 different regions of Brazil. Results: Of the 93 index patients, 8 (9%) carried an FGF14 (GAA)≥250 expansion. The expansion was also identified in 1 affected relative. Seven patients were of European descent, 1 was of African descent, and 1was of admixed American ancestry. One patient carrying a (GAA)376 expansion developed ataxia at age 28 years, confirming that GAA-FGF14 ataxia can occur before the age of 30 years. One patient displayed episodic symptoms, while none had downbeat nystagmus. Cerebellar atrophy was observed on brain MRI in 7 of 8 patients (87%). Discussion: Our results suggest that GAA-FGF14 ataxia is a common cause of adult-onset ataxia in the Brazilian population, although larger studies are needed to fully define its epidemiology.

13.
Brain ; 146(10): 4191-4199, 2023 10 03.
Article En | MEDLINE | ID: mdl-37170631

COQ7 encodes a hydroxylase responsible for the penultimate step of coenzyme Q10 (CoQ10) biosynthesis in mitochondria. CoQ10 is essential for multiple cellular functions, including mitochondrial oxidative phosphorylation, lipid metabolism, and reactive oxygen species homeostasis. Mutations in COQ7 have been previously associated with primary CoQ10 deficiency, a clinically heterogeneous multisystemic mitochondrial disorder. We identified COQ7 biallelic variants in nine families diagnosed with distal hereditary motor neuropathy with upper neuron involvement, expending the clinical phenotype associated with defects in this gene. A recurrent p.Met1? change was identified in five families from Brazil with evidence of a founder effect. Fibroblasts isolated from patients revealed a substantial depletion of COQ7 protein levels, indicating protein instability leading to loss of enzyme function. High-performance liquid chromatography assay showed that fibroblasts from patients had reduced levels of CoQ10, and abnormal accumulation of the biosynthetic precursor DMQ10. Accordingly, fibroblasts from patients displayed significantly decreased oxygen consumption rates in patients, suggesting mitochondrial respiration deficiency. Induced pluripotent stem cell-derived motor neurons from patient fibroblasts showed significantly increased levels of extracellular neurofilament light protein, indicating axonal degeneration. Our findings indicate a molecular pathway involving CoQ10 biosynthesis deficiency and mitochondrial dysfunction in patients with distal hereditary motor neuropathy. Further studies will be important to evaluate the potential benefits of CoQ10 supplementation in the clinical outcome of the disease.


Mitochondrial Diseases , Humans , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Diseases/metabolism , Motor Neurons/metabolism , Mutation/genetics , Ubiquinone/genetics
14.
Muscle Nerve ; 67(2): 165-168, 2023 Feb.
Article En | MEDLINE | ID: mdl-36420641

INTRODUCTION/AIMS: The A-wave is a late response related either to demyelination or early axonal regeneration. It may be helpful in the evaluation of some peripheral neuropathies. In leprosy, previous studies suggested that A-waves could be a neurophysiological marker of pain in patients during reactions. Herein we have attempted to further assess the profile and clinical correlates of A-waves by exploring a large leprosy cohort. METHODS: Between 2015 and 2018, 63 patients with leprosy (47 men and 16 women) had A-waves in nerve conduction studies and were included in this study. We included patients regardless of whether they were experiencing leprosy reactions or not. We then compared clinical features in nerves with and without A-waves. RESULTS: The mean age of study participants was 46.5 ± 12.3 years and most had borderline leprosy. From this cohort, we assessed separately 83 motor nerves that demonstrated A-waves (group A+ ) and 29 motor nerves that did not demonstrate A-waves (group A- ). Neuropathic pain (NP) was found in 66 of 83 nerves in group A+ , but only 5 of 29 in group A- (79.5 vs 17.2%, P < .001). In contrast, no significant between-group difference emerged regarding presence of reactions, sensory function (based on Semmes-Weinstein evaluations), or muscle strength. A-waves were found in nerves with neuropathic pain experiencing (39 of 66 = 59%) or not experiencing (27 of 66 = 41%) leprosy reactions. DISCUSSION: These results show that A-waves are associated with neuropathic pain in leprosy patients, regardless of the nerves affected and the immune status (in reaction or not).


Leprosy , Nerve Tissue , Neuralgia , Male , Humans , Female , Adult , Middle Aged , Neural Conduction/physiology , Neuralgia/etiology , Leprosy/complications
15.
Mov Disord ; 38(1): 45-56, 2023 01.
Article En | MEDLINE | ID: mdl-36308733

BACKGROUND: Spinal cord damage is a hallmark of Friedreich's ataxia (FRDA), but its progression and clinical correlates remain unclear. OBJECTIVE: The objective of this study was to perform a characterization of cervical spinal cord structural damage in a large multisite FRDA cohort. METHODS: We performed a cross-sectional analysis of cervical spinal cord (C1-C4) cross-sectional area (CSA) and eccentricity using magnetic resonance imaging data from eight sites within the ENIGMA-Ataxia initiative, including 256 individuals with FRDA and 223 age- and sex-matched control subjects. Correlations and subgroup analyses within the FRDA cohort were undertaken based on disease duration, ataxia severity, and onset age. RESULTS: Individuals with FRDA, relative to control subjects, had significantly reduced CSA at all examined levels, with large effect sizes (d > 2.1) and significant correlations with disease severity (r < -0.4). Similarly, we found significantly increased eccentricity (d > 1.2), but without significant clinical correlations. Subgroup analyses showed that CSA and eccentricity are abnormal at all disease stages. However, although CSA appears to decrease progressively, eccentricity remains stable over time. CONCLUSIONS: Previous research has shown that increased eccentricity reflects dorsal column (DC) damage, while decreased CSA reflects either DC or corticospinal tract (CST) damage, or both. Hence our data support the hypothesis that damage to the DC and damage to CST follow distinct courses in FRDA: developmental abnormalities likely define the DC, while CST alterations may be both developmental and degenerative. These results provide new insights about FRDA pathogenesis and indicate that CSA of the cervical spinal cord should be investigated further as a potential biomarker of disease progression. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Friedreich Ataxia , Movement Disorders , Humans , Friedreich Ataxia/complications , Friedreich Ataxia/pathology , Ataxia , Magnetic Resonance Imaging/methods , Pyramidal Tracts
16.
PLoS One ; 17(11): e0269649, 2022.
Article En | MEDLINE | ID: mdl-36410013

INTRODUCTION: Drug development for neurodegenerative diseases such as Friedreich's ataxia (FRDA) is limited by a lack of validated, sensitive biomarkers of pharmacodynamic response in affected tissue and disease progression. Studies employing neuroimaging measures to track FRDA have thus far been limited by their small sample sizes and limited follow up. TRACK-FA, a longitudinal, multi-site, and multi-modal neuroimaging natural history study, aims to address these shortcomings by enabling better understanding of underlying pathology and identifying sensitive, clinical trial ready, neuroimaging biomarkers for FRDA. METHODS: 200 individuals with FRDA and 104 control participants will be recruited across seven international study sites. Inclusion criteria for participants with genetically confirmed FRDA involves, age of disease onset ≤ 25 years, Friedreich's Ataxia Rating Scale (FARS) functional staging score of ≤ 5, and a total modified FARS (mFARS) score of ≤ 65 upon enrolment. The control cohort is matched to the FRDA cohort for age, sex, handedness, and years of education. Participants will be evaluated at three study visits over two years. Each visit comprises of a harmonized multimodal Magnetic Resonance Imaging (MRI) and Spectroscopy (MRS) scan of the brain and spinal cord; clinical, cognitive, mood and speech assessments and collection of a blood sample. Primary outcome measures, informed by previous neuroimaging studies, include measures of: spinal cord and brain morphometry, spinal cord and brain microstructure (measured using diffusion MRI), brain iron accumulation (using Quantitative Susceptibility Mapping) and spinal cord biochemistry (using MRS). Secondary and exploratory outcome measures include clinical, cognitive assessments and blood biomarkers. DISCUSSION: Prioritising immediate areas of need, TRACK-FA aims to deliver a set of sensitive, clinical trial-ready neuroimaging biomarkers to accelerate drug discovery efforts and better understand disease trajectory. Once validated, these potential pharmacodynamic biomarkers can be used to measure the efficacy of new therapeutics in forestalling disease progression. CLINICAL TRIAL REGISTRATION: ClinicalTrails.gov Identifier: NCT04349514.


Friedreich Ataxia , Adult , Humans , Biomarkers , Brain/pathology , Disease Progression , Friedreich Ataxia/pathology , Magnetic Resonance Spectroscopy
17.
Expert Rev Mol Diagn ; 22(7): 745-760, 2022 07.
Article En | MEDLINE | ID: mdl-36042576

INTRODUCTION: Hereditary spastic paraplegias (HSP) include a clinically and genetically heterogeneous group of conditions. Novel imaging modalities have been increasingly applied to HSP cohorts, which help to develop monitoring markers for both clinical care and future clinical trials. AREAS COVERED: Advances in HSP imaging are systematically reviewed with a focus on cohort sizes, imaging modalities, study design, clinical correlates, methodological approaches, and key findings. EXPERT OPINION: A wide range of imaging techniques have been recently applied to HSP cohorts. Common shortcomings of existing studies include the evaluation of genetically admixed cohorts, limited sample sizes, lack of postmortem validation, and a limited clinical battery. A number of innovative methodological approaches have also been identified, such as robust longitudinal study designs, the implementation of multimodal imaging protocols, complementary cognitive assessments, and the comparison of HSP cohorts to MND cohorts. Collaborative multicenter initiatives may overcome sample limitations, and comprehensive clinical profiling with motor, extrapyramidal, cerebellar, and neuropsychological assessments would permit systematic clinico-radiological correlations. Academic achievements in HSP imaging have the potential to be developed into viable clinical applications to expedite the diagnosis and monitor disease progression.


Spastic Paraplegia, Hereditary , Biomarkers , Cues , Humans , Longitudinal Studies , Mutation , Neuroimaging , Spastic Paraplegia, Hereditary/diagnostic imaging , Spastic Paraplegia, Hereditary/genetics
18.
Expert Rev Clin Immunol ; 18(10): 1071-1081, 2022 10.
Article En | MEDLINE | ID: mdl-36001085

INTRODUCTION: Neurologic manifestations in primary Sjogren's Syndrome (pSS) are characterized by a heterogeneity of clinical manifestations. In clinical practice, physicians are challenged with the absence of diagnostic criteria and the lack of clinical trials to support treatment. In this article, we will review the epidemiology, clinical and immunological characterization, diagnosis, and treatment of neurologic events in pSS. AREAS COVERED: This narrative review provides an overview of the neurologic manifestations described in PSS, as well as complementary investigations and treatments reported. Articles were selected from PubMed searches conducted between December 2021 and February 2022. EXPERT OPINION: Epidemiology and clinical features of neurologic manifestations are derived from different cohort studies. Our understanding of pathophysiology of neurologic manifestations in pSS has significantly increased in the past few years, especially regarding PNS. However, there are still many knowledge gaps on therapeutics. The few available data on therapy rely upon small case series, from experiences with other autoimmune diseases, such as systemic lupus erythematosus or expert opinion. There is an urgent need for well-designed clinical trials.


Lupus Erythematosus, Systemic , Sjogren's Syndrome , Humans , Lupus Erythematosus, Systemic/epidemiology , Sjogren's Syndrome/diagnosis , Sjogren's Syndrome/epidemiology , Sjogren's Syndrome/therapy
20.
J Neurol Sci ; 434: 120126, 2022 Mar 15.
Article En | MEDLINE | ID: mdl-35007920

INTRODUCTION: The VAPB gene is associated with fALS (fALS 8). This disease presents a variable phenotype and no study sought to characterize its neuroanatomical abnormalities until now. This study aims to evaluate structural brain and spinal cord abnormalities in symptomatic and pre-symptomatic VAPB-related ALS. METHODS: This cohort included 10 presymptomatic and 20 symptomatic carriers of the Pro56Ser VAPB variant as well as 30 matched controls and 20 individuals with sporadic ALS. They underwent detailed clinical evaluation and MRI in a 3 T scanner. Using volumetric T1 sequence, we computed cerebral cortical thickness (FreeSurfer), basal ganglia volumetry (T1 Multi-atlas) and SC morphometry (SpineSeg). DTI was used to assess white matter integrity (DTI Multi-atlas). Groups were compared using a generalized linear model with Bonferroni-corrected p values<0.05. We also plotted VAPB brain expression map using Allen Human Brain Atlas to compare with imaging findings. RESULTS: Mean age of presymptomatic and symptomatic subjects were 43.2 and 51.9 years, respectively. Most patients had a predominant lower motor neuron phenotype (16/20). Sleep complaints and tremor were the most frequent additional manifestations. Compared to controls, symptomatic subjects had pallidal, brainstem and SC atrophy, whereas presymptomatic only had SC atrophy. This pattern also contrasted with the sALS group that presented motor cortex and corticospinal abnormalities. Brain structural damage and VAPB expression maps were highly overlapping. CONCLUSION: VAPB-related ALS has a distinctive structural signature that targets the basal ganglia, brainstem and SC, which are regions with high VAPB expression. Neuroanatomical SC changes are evident before clinical onset of the disease.


Amyotrophic Lateral Sclerosis , White Matter , Amyotrophic Lateral Sclerosis/diagnostic imaging , Amyotrophic Lateral Sclerosis/genetics , Atrophy , Brain/diagnostic imaging , Humans , Magnetic Resonance Imaging , Spinal Cord/diagnostic imaging , Vesicular Transport Proteins , White Matter/diagnostic imaging
...